Advanced modelling of DIII-D tungsten divertor probe experiments for analysis of plasma ELM and non-ELM effects on sputter erosion, transport, and redeposition

T. Sizyuka, J.N. Brooksa, A. Hassaneina
T. Abramsb, J.D. Elderc, D.L. Rudakovb, W.R. Wamplerd

aPurdue University, West Lafayette IN, USA
bGeneral Atomics, San Diego CA, USA
cSandia National Laboratories, Albuquerque, NM, USA

tsizyuk@purdue.edu

Understanding the processes involved in high-Z plasma surface interactions is a fundamental goal for the DIII-D tokamak Divertor Material Evaluation System (DiMES). Accordingly, we analyze a series of experiments \cite{1} in which tungsten spots deposited on graphite DiMES samples were exposed to both L-mode plasmas and H-mode plasmas with edge localized modes (ELMs). The L-mode experiments used the “big spot” (15 mm dia.) and “small spots” (1 mm dia.) technique \cite{2-4} to assess W net and gross erosion, respectively. Tungsten erosion in the DIII-D experiments is found to be primarily due to physical sputtering by incident carbon ions in several different charge states and to self-sputtering from redepositing tungsten ions.

We compute the time-dependent sputter erosion and transport of the tungsten by the incident plasma using the REDEP/WBC 3-D, full-kinetic, sub-gyro orbit, impurity erosion/redeposition code package, coupled with DiMES-surface simulations from the ITMC-DYN dynamic surface mixing and sputter response code \cite{5}. We compute near-surface L-mode plasma profile inputs to WBC using the data-calibrated OEDGE plasma fluid code. Using the newly developed WBC/ITMC code package coupling, the change in tungsten sputtering yields and sputtered atom velocity distributions - due to the evolving carbon-containing and deuterium-containing tungsten surface - is self-consistently determined. Modeling also incorporates the detailed DIII-D oblique incidence magnetic sheath structure at the divertor and resulting ion impact angle distribution.

These simulations allow code comparisons to be made with post-exposure erosion data from the L-Mode exposed W spots by Sandia Laboratories ion beam analysis and with in-situ plasma W1 photon emission measurements \cite{1} for the ELMy exposures. We also compare present simulation results to those in \cite{4} for DiMES/tungsten with different plasma conditions.

\cite{1} T. Abrams et al., Nuclear Materials and Energy 17(2018)164
\cite{2} P.C. Stangeby et al., Journal of Nuclear Materials 438(2013)S309
\cite{3} D.L. Rudakov et al., Fusion Engineering and Design 124(2017)196
\cite{4} J.N. Brooks et al., Fusion Engineering and Design 94(2015)67
\cite{5} T. Sizyuk and A. Hassanein, Journal of Nuclear Materials 438(2013)S1109

* Work supported by the US Dept. of Energy under DE-SC0020198 and DE-FC02-04ER54698.