Investigation of the distribution of remaining tritium in divertor in the Large Helical Device

S. Masuzakia,b, M. Yajimaa, K. Ogawaa,b, G. Motojimaa,b, M. Tokitania,b, M. Isobea,b, T. Otsukac and the LHD Experiment Group

a National Institute for Fusion Science, 322-6 Orosi, Toki 509-5292, Japan
b SOKENDAI University, 322-6 Orosi, Toki 509-5292, Japan
c Kindai University, 3-4-1 Kowake, Higashiosaka City, Osaka 577-8502, Japan

masuzaki.suguru@nifs.ac.jp

In this study, amounts of the remaining tritium (T) in divertor tiles in the Large Helical Device (LHD) are measured by using an imaging plate (IP) technique [1] and a thermal desorption method to investigate the distribution of remaining T in the helical divertor. Depth profiles of the remaining T in divertor tiles are estimated by using the combination the IP technique and the glow discharge optical emission spectroscopy (GD-OES). The distribution of positions of high-energy triton loss on the divertor is calculated by using a Lorentz orbit following code (LORBIT) [1] to compare to the distribution of remaining T in the divertor.

In LHD, a portion of tritons generated by deuterium-deuterium (DD) fusion reactions is lost without collisions with background plasma particles to the divertor region with high energy up to 1.01 MeV, and the portion is approximately 40 % in the case of the standard magnetic configuration [2]. On the other hand, evacuated gas analyses showed that approximately 35.5 % of the generated T was evacuated, and approximately 60 % of the generated T could remain in the vacuum vessel in the case of the first D plasma experimental campaign in 2017 [3]. These results suggest that more than 66 % of the remaining T in the vacuum vessel could be in the divertor. The total plasma surface area of divertor tiles is approximately less than 10 % of the total plasma surface area of the vacuum vessel. Therefore, the T densities in divertor tiles can be much larger than in the first wall. Indeed the results of the IP measurement conducted after the first D plasma campaign showed much larger T density on surfaces of the divertor tiles than that on first wall panels [4]. However, the IP technique can measure the T remaining within the depth shallower than the escape depth of β-rays from T decay, less than 1 μm, and thus depth profiles and total amounts of remaining T in divertor tiles are necessary to know the distribution of remaining T in the divertor. The measurement of depth profiles of remaining T in divertor tiles, which are made of graphite, using the GD-OES and the IP has been conducted. A result of the measurement shows that the profile has a peak at approximately 5 μm from the surface, and the remaining T decreases to approximately 10 % of the peak value at around 10 μm from the surface. This result suggests that the remaining T in the tile is the lost high-energy triton, and the estimated remaining amount from results of the IP measurement can make underestimation.

In the presentation, total amounts and the distribution of remaining T in the divertor are shown. Results of the calculation of LORBIT considering divertor tiles are compared to the distribution, and the mechanism of the formation of the distribution is discussed.