Carbon clustering and effect on hydrogen trapping in tungsten: First-principles studies

Li Yanga, Brian D. Wirtha,b

aDepartment of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
bFusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

liyang@utk.edu

To understand the effect of carbon (C) on hydrogen (H) behavior in tungsten (W) exposed to succeeding C deposition in fusion reactors, first-principles density functional theory calculations have been performed to evaluate the C clustering in W with and without vacancies and the effect of C content on the H trapping at a vacancy. The calculations were performed in 128-atom and 432-atom supercells. The results show that the nascent formation of W carbide is based on a pair of C atoms located at two neighboring octahedral interstitial sites along the \textit{<111>} direction with a distance of 0.284 nm. Interstitial C atoms prefer to form a zigzag chain between two \{110\} planes, and the C binding energy increases with increasing number of C until four C atoms and then saturates at a nearly constant value of 0.7 eV for larger C clusters. The presence of vacancies enhances the interactions between C and its first nearest neighbor (1NN) W atoms because of strong hybridization between the C-\textit{p} state and \textit{d} state of its 1NN W, strengthening the C trapping at vacancies. Meanwhile, the appearance of C improves the stability of di-vacancy in W. However, the H binding energies to carbon-vacancy-hydrogen (C\textsubscript{m}VH\textsubscript{x-1}) complexes decrease with increasing C contents. For a given C content, the H binding energies to C\textsubscript{m}VH\textsubscript{x-1} complexes generally decrease with increasing number of H. The maximum H content that can be trapped by C\textsubscript{m}V complexes decreases monotonically with increasing number of C atoms, and the C effect on H trapping is dependent on temperature.