Impact of plasma density/collisionality on divertor heat flux width

Nami Lia, X.Q. Xub and D.Z. Wanga

aSchool of Physics, Dalian University of Technology, Dalian 116024, China
bLawrence Livermore National Laboratory, Livermore, CA 94550, USA

linami@mail.dlut.edu.cn

The latest studies of the divertor heat flux width λq show that λq is inversely proportional to the poloidal magnetic field B_p which is only for the low-gas-puff H-mode conditions \cite{1, 2}. BOUT++ simulations of the divertor heat flux width for the attached divertor conditions of H-mode discharges show a good agreement with this scaling \cite{3, 4}. However, ASDEX-Upgrade (AUG) data showed that the scrape-off width broadens as the density/collisionality increases which is outside the scaling law for the detached divertor conditions of H-mode discharges \cite{5}. Two possible physics mechanisms cause the width broadened. As the SOL density increases, the SOL residence time is likely increased \cite{6} and the SOL transport is likely enhanced \cite{7}. In order to investigate the scaling characteristics of the divertor heat flux width vs density/collisionality, a series of BOUT++ transport and turbulence simulations are conducted to capture the physics via a plasma density scan with fixed pressure profiles. BOUT++ transport simulations show that with the density increasing, the residence time of energy in the scrape-off-layer (SOL) increases from the low collisionality to high collisionality due to the classical electron parallel thermal conductivity, leading to the heat flux width λq broadening. The heat flux width is proportional to the square root of mass for low collisionality while it has a weakly dependence on mass for high collisionality. BOUT++ turbulence simulations show that as the density/collisionality increases, the turbulence transport enhances which lead to the increasing of divertor heat flux.

\cite{1} T. Eich et al., Nucl. Fusion 53 (2013) 093031.
\cite{2} R.J. Goldston, Nucl. Fusion 52 (2012) 013009.
\cite{3} B. Chen et al., Nucl. Fusion 57 (2017) 116025.
\cite{4} X.Q. Xu et al. Nucl. Fusion 59(2019) 126039.
\cite{6} R.J. Goldston, EPS 2019, APS 2019.
\cite{7} T. Eich et al., EPS 2019