The resilience of highly dissipative exhaust scenarios at JET to seed impurity mixes and divertor geometry

M. Wischmeiera, A. Huberb, C.G. Lowryc, S. Wiesenb, M. Bernerta, S. Glögglera, M.L. Reinke d, S. Brezinsekb, G. Calabro e, S. Hendersonf, B. Lomanowskif, C.F. Maggif, A. Meigsf, G. Sergienkob, E.R. Solanog and JET contributors1

aEUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK
bMax-Planck-Institut für Plasmaphysik, 85748 Garching bei München, Germany
cForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, 52425 Jülich, Germany
dEuropean Commision, B-1049 Brussels, Belgium
eOak Ridge National Laboratory, Oak Ridge, TN 37831, USA
fENEA for EUROfusion, via E. Fermi 45, 00044 Frascati, Italy
gCCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
hLaboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

marco.wischmeier@ipp.mpg.de

The engineering limits in a fusion power plant, FPP, with radiation damages expected to be between 20-50 dpa require the power load to the divertor target plates to be limited to $\sim 10 \, \text{MW/m}^2$. With impurity radiation and neutrals contributing strongly to the peak power load onto the target plates, the power flux carried by charged particles is restricted to be below $5 \, \text{MW/m}^2$. With an ITER like lower single null divertor the power dissipation, f_{diss}, between the core plasma and the divertor target plates is then required to be $> 90\%$ of the total loss power. The total dissipation accounts for losses from radiation, perpendicular transport and CX processes. While ITER is expected to radiate 30\% of the loss power in the core, a FPP may be required to radiate up to 70\% on closed field lines \cite{1}. The required power load restriction combined with the desire to enhance the life time in view of erosion ($T_e < 5 \, \text{eV}$) would imply completely detached divertor targets and only small/tiny or no ELMs.

On JET with metal PFCs highly dissipative regimes with completely detached divertor targets and small and no ELM regimes have been achieved using a variety of seeding species \cite{2,3}. For example with Ne seeding at heating powers of up to $\sim 35 \, \text{MW}$ ELM free L-M-mode transitions were obtained with an H_{98y} of up to 0.95. However, for Ne seeding only during M-mode phases the targets were completely detached with target $T_e < 3 \, \text{eV}$. For the loss of Ne as seeding impurity the experimentally observed dynamics of the re-attachment process will be reported. Varying the admixture of Ar and N_2 alters the ratio of core to divertor radiation but not the achievable f_{diss} with completely detached divertor targets. For the same fueling gas throughput confinement in unseeded JET ILW discharges with an open horizontal divertor is improved ($H_{98y} \sim 0.95$) compared to vertical target geometry ($H_{98y} \sim 0.7$). However, with N_2 as well as with Kr seeding the maximum achievable f_{rad} are equal for both configurations ($f_{\text{rad}} \sim 0.75$ for N_2), with confinement being equal and degraded compared to horizontal targets but similar to unseeded vertical targets condition ($H_{98y} \sim 0.7$).

\cite{1} M. Wischmeier et al., J. Nucl. Mater. 463 (2015) 22, \cite{2} S. Glöggler et al., Nuclear Fusion 59 (2019) 126031, \cite{3} M. Bernert et al., Nucl. Mat. and Energy 12 (2017) 111

1See the author list of E. Joffrin et al. accepted for publication in Nuclear Fusion Special issue 2019, https://doi.org/10.1088/1741-4326/ab2276