Determination of the averaged Z_{eff} for the W7-X plasma based on the PHA spectra

S. Jabłońskia, M. Grucaa, M. Kubkowskaa, A. Chomiczewskaa, T. Fornala, N. Krawczyka, L. Ryća, M. Krychowiakb, A. Pavoneb, G. Fuchertb, S. Bozhenkovb, H. Thomsenb, U. Neunerb, U. Hergenhahnb, R. Burhennb, D. Zhangb, S. Kwakb, U. Höfelb, J. Svenssonb and the W7-X team

a Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
b Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany

slawomir.jablonski@ifpilm.pl

The information about the ion effective charge, Z_{eff} and impurities concentration in plasma is a crucial issue in fusion research. The paper presents two methods for determination of Z_{eff} of Wendelstein 7-X (W7-X) plasma based on the collected pulse height analysis (PHA) spectra. The PHA system on W7-X measures spectra in the wide energy range, from about 0.5 up to 20 keV which allows for observation of light (like carbon, oxygen), medium (like sulfur, chlorine, argon) and high Z- elements (like iron, nickel, copper) \cite{1}. The spectra consist of Bremsstrahlung, recombination and linear contribution of radiation. The first method is based on simulations of observed spectra. Using the created computer code, simulations of X-ray spectra for given concentrations of impurities in plasma were made. Compatibility between the measured and calculated spectra was a measure of the correctness of the assumed concentrations. Based on these data, the averaged values of Z_{eff} along line of sight, were calculated. The second method is similar to this one used in the visible range for Z_{eff} determination from Bremsstrahlung emissivity measurements \cite{2}. However, in the soft X-ray region also recombination radiation plays a role. For determining the Z_{eff} value the free-bound emissivity is therefore extracted from the continuum radiation by the simulation of experimental spectrum. The obtained Z_{eff} value corresponds to the averaged one along the PHA diagnostic line of sight. The results will be compared with Z_{eff} values obtained from the measurements for visible bremsstrahlung continuum at W7-X \cite{3}.

\begin{thebibliography}{9}
\bibitem{1} M. Kubkowska et al. Review of Scientific Instruments 89, 10F111 (2018)
\bibitem{2} M. Krychowiak et al. Review of Scientific Instruments 79, 10F512 (2008)
\bibitem{3} A. Pavone et al. Journal of Instrumentation 14, C10003 (2019)
\end{thebibliography}