First exploitation results of recently developed SXR GEM-based diagnostics at the WEST project

M. Chernyshovaa, D. Mazonb, T. Czarskia, K. Malinowskia, A. Wojeńskia, P. Malardb, E. Kowalska-Strzęciwilka, K.T. Poźniaka, G. Kasprówiczc, W. Zabolotnye, R.D. Krawczykc,d, P. Kołasińskie, M. Gąskae, P. Linczuke, and the WEST teame

a Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland
b CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
c Warsaw University of Technology, Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
d CERN, 1211 Geneva 23, Switzerland
e http://west.cea.fr/WESTteam

maryna.chernyshova@ipplm.pl

One of the tasks associated with the study of plasma wall interaction in tokamaks, is to study the process of the formation and behaviour of plasma contamination induced by this interaction. One has to note that plasma contamination can cause many instabilities and may even lead to the disruption of the plasma. Of a particular interest here is tungsten, which is to be used as divertor material in the ITER reactor. Basic information on impurities is, in general, obtained by studying linear emission of impurities. The solution of most contamination problems depends to a decisive degree on the knowledge of the dynamics of impurities emission in time and space (in the cross-section of the plasma).

X-ray spectroscopy used for this purpose is a recognized, effective and powerful tool in plasma diagnostics. It provides effective means for studies of W components erosion, consequences of it and material migration. The search for new technologies in the field of plasma diagnostics entails the increasing demands on the radiative stability of the used materials due to development and usage of fusion facilities, where the study of processes occurring during the interaction of radiation with matter has become particularly important. Currently, a new X-ray imaging detection technology is required for tokamaks such as ITER. X-ray detectors that are being used nowadays in existing equipment may rapidly degrade due to large neutron fluxes characteristic for the tokamak environment.

This contribution presents the development of the elaborated plasma imaging technology in the area of soft X-ray radiation (SXR), designed to monitor the radiation of impurities. This work will provide details of the developed diagnostics and preliminary results obtained within the commissioning phase at the WEST Project. It will be shown that both spatially and spectrally resolved calibrated data could be collected, as well as comparison with other WEST diagnostics will be presented. The system for the moment provides first measurements and records rather high part of the SXR which still could be very useful to testify about an intensification of the erosion (e.g. thanks to bremsstrahlung effect).1

1 This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This scientific work was partly supported by Polish Ministry of Science and Higher Education within the framework of the scientific financial resources in the years 2014-2019 allocated for the realization of the international co-financed project.